Relative commutator theory in semi-abelian categories

نویسندگان

  • Tomas Everaert
  • Tim Van der Linden
چکیده

Based on the concept of double central extension from categorical Galois theory, we study a notion of commutator which is defined relative to a Birkhoff subcategory B of a semi-abelian category A. This commutator characterises Janelidze and Kelly’s B-central extensions; when the subcategoryB is determined by the abelian objects inA, it coincides with Huq’s commutator; and when the category A is a variety of Ω-groups, it coincides with the relative commutator introduced by the first author. © 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Baer Invariants in Semi-abelian Categories I: General Theory T. Everaert and T. Van Der Linden

Extending the work of Fröhlich, Lue and Furtado-Coelho, we consider the theory of Baer invariants in the context of semi-abelian categories. Several exact sequences, relative to a subfunctor of the identity functor, are obtained. We consider a notion of commutator which, in the case of abelianization, corresponds to Smith’s. The resulting notion of centrality fits into Janelidze and Kelly’s the...

متن کامل

Baer Invariants in Semi-abelian Categories I: General Theory

Extending the work of Fröhlich, Lue and Furtado-Coelho, we consider the theory of Baer invariants in the context of semi-abelian categories. Several exact sequences, relative to a subfunctor of the identity functor, are obtained. We consider a notion of commutator which, in the case of abelianization, corresponds to Smith’s. The resulting notion of centrality fits into Janelidze and Kelly’s the...

متن کامل

COMMUTATOR THEORY IN STRONGLY PROTOMODULAR CATEGORIES Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

We show that strongly protomodular categories (as the category Gp of groups for instance) provide an appropriate framework in which the commutator of two equivalence relations do coincide with the commutator of their associated normal subobjects, whereas it is not the case in any semi-abelian category.

متن کامل

Semi-abelian categories, torsion theories and factorisation systems

Semi-abelian categories [5] provide a suitable axiomatic context to study, among other things, the (co)homology of non-abelian algebraic structures (such as groups, compact groups, crossed modules, commutative rings, and Lie algebras), torsion and radical theories, and commutator theory. In this talk a brief introduction to some elementary properties of these categories will be given, before fo...

متن کامل

Homology and homotopy in semi-abelian categories

The theory of abelian categories proved very useful, providing an ax-iomatic framework for homology and cohomology of modules over a ring (in particular, abelian groups) [5]. A similar framework has been lacking for non-abelian (co)homology, the subject of which includes the categories of groups and Lie algebras etc. The point of my thesis is that semi-abelian categories (in the sense of Janeli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012